Effective Machine Shutdowns are Key to Successful Start Ups

By Garrett MacKenzie

press floor

The weekend comes to an end and the time comes to bring the molding floor back online for the beginning of a new work week. A molder can sometimes dread the tasks associated with a full plant restart. There are many potential failures that can occur as a plant is returned to a production state. Despite these risks, much of the headache can be avoided simply through proper shutdown and start up procedures. The following article addresses many key components that often lead to poor restarts. It also provides insight into some of the methods that can be implemented to not only reduce system breakdowns, but also can offer smoother start-ups with fewer problems.

Anyone who has experienced a full plant restart can tell you it can either be a smooth or a tragic event. As much as we wish that machines, tools and equipment would just cooperate, this simply is not always the case. It is important to understand the key components of start-up to be able to counter with fail-safe procedures on restart. Rushing through start-up often leads to failures within the facility. Here are some of the key components that lead to poor starts, as well as what you can do to prevent these factors from negatively affecting your shop:

Shutdown: One of the first key considerations to plant restart is shut down. Shutting your shop down is best viewed as preparation for plant start-up. Your facility’s shutdown procedures are one of the biggest contributing factors in how effectively your team brings the plant back into a new production workweek. Here are some of the primary focuses in plant shutdown:

1. Material Handling: There are many material-related failures that can cause poor starts. At shutdown, make sure your gaylords and material containers have been covered to prevent contamination and excessive exposure to moisture. Dried material in hoppers or one-shots above the press should be removed in anticipation of the restart, and to prevent wet material from being a start-up concern. As the press is shut down, run the barrel dry. This prevents material from bridging in the feedthroat of the press and causing unneeded downtime.
If dryers are to be left on over the weekend, their temperatures should be banked (lowered) to help prevent overdrying.

2. Tooling: Molds are a key focus. Improper shutdowns can be a primary reason for poor start-ups. Mold chillers are prone to sweating and should be cycled 5-10 minutes with the chiller off prior to full shutdown. This helps to reduce sweating, a primary cause of rust. Tooling should be cleaned and sprayed with rust preventative, and moving components should be inspected for wear and proper grease.
When working with clear polycarbonate or light colored materials and a hot runner mold, it is good practice to shut the hot runner off and allow the machine to cycle until the mold no longer produces parts. This keeps material from baking in the manifold, and reduces contamination at start up.

Mold should be left with mold halves touching (not under pressure) to protect the mold faces. Look for signs of water leaks on top of the mold. If they exist, fix the leak and soak up water to prevent it from getting inside the mold. Main water should be shut off and relieve the pressure from all water circuits.

3. Press Side: The barrel should be left empty, and the screw sucked back to about 1.00 to prevent drooling and to leave the screw in a neutral state. As mentioned above, mold halves should be left touching to prevent exposure to environmental exposure to moisture while in stasis. Check the bushing, purge tray and press bed for material to prevent unneeded downtime during start-up. The production area should be left clean, and ready for the team responsible for beginning the production week. Heats should either be banked at 300F, or you can perform a complete press power down, depending on your facility’s start-up approach.

purge

Materials prone to degradation (such as nylon, acetal, ABS, etc.) should be purged out using a purging compound and/ or an inert material such as polypropylene. Verify that drying sources have either been set to banked (reduced) temperatures or have been powered down. Thermolators should be turned off, and the pressures on them released.

Make sure all auxiliary equipment is turned off, and that the production area has been prepared for the start-up team’s duties. Be sure to provide that team with a list of scrap / downtime issues that occurred during the last shift of the week, so the team’s members are fully aware of potential problems.

Press shutdown provides the perfect opportunity for a post-production preventative maintenance inspection. Tiebars, belts, hoses, oil levels, lubrication systems, etc. should be inspected for proper working conditions.

Molders, start your facilities

processor

The key to a successful plant start-up is preparation. Clean starts are the result of careful planning and prudent procedures that prevent problematic production restarts. The following section addresses some of the primary focuses the start-up team should address prior to and during the start-up event:

1. Dryers: Plastics that require drying are a key consideration to address when returning the floor to production. Material moisture can wreak havoc on a start-up team’s goal of low scrap and fast and efficient restarts. If the dryer temperatures were reduced to a bank temp, then less drying time would be required to assure that material moisture is at an adequate state. If unsure what temperature to bank your dyer at, use the formula of 60% of actual drying termperature. It is important to note that not all materials require the dryers to be banked over the weekend. Best practice is to bank all dryers to assure that heat sensitive materials do not get overdried without the presence of material throughput.

Moisture content can be quickly and easily verified using a moisture analyzer. In addition, the first 25 pounds of material in the hopper should be drained due to poor circulation of heated air to the bottom of the dryer cone. As the material is drained, hold your hand in the path of the material exiting and drain until it is consistently hot to the touch. Do not load to the feed throat until just before you begin production.

2. Molds: Inspect the mold for signs of abnormal conditions or rust. Cycle the clamp a few times to inspect for proper operation and clamp set-up. Fully clean the mold and inspect any moving mechanisms or contact points to assure they are properly lubricated. If the mold is normally heated, then turn the water and thermolators on, allowing the tool to heat-soak with mold halves touching for about 15 minutes to ensure the mold faces are consistent in temperature.

Inspect water hook-ups for signs of leaking, and repair these to prevent moisture from being a cause of scrap. Also inspect core lines for excessive wear and/ or leaks.
Hot runner molds should be preheated and allowed to heat-soak. Check all water valves to assure they are in the “open” position and feel lines for turbulent flow.

3. Screw & Barrel: Make sure that the barrel has been brought up to temperature, and once temps have been achieved heat-soak the barrel for at least 20 minutes. Not doing so could lead to damage to the screw / barrel assembly. Review each temperature zone to assure that heater bands are working properly and each zone is at the required temperature. Watch for zones that do not come up to temperature at a normal rate in comparison to the zones around them. This can be a sign of a worn or damaged heater band.

The screw should be purged thoroughly prior to beginning the first cycle to assure that all purge compound and degraded material has been removed and that fresh material is what you will be shooting into the mold.

In closing, consistency in your shutdown/ start-up procedures cannot be stressed enough. All individuals assigned to these tasks should be trained to perform these duties uniformly. The more variance there is from press to press (or even job to job), the more likely that poor efficiencies and downtime will result. By incorporating standardized procedures in your shutdown, you improve your capability of solid starts. Your start-ups require a lot less thought and are stronger, with less scrap and a much smoother return to full production.

Plastic411: A Closer Look at Scientific Molding

 

moldflow2

By Garrett MacKenzie

Plastic injection processing has experienced massive change in the last 20 years. The days of molding by time and pressure have given way to molding by position, peak pressure and process repeatability. Don Paulson, RJG and John Bozzelli were major pioneers in the development of decoupled and scientific molding as the procedures were developed and given structure. Plastic injection as an “art” gave way to plastics processing as a science of repeatability and standardization…..

Click HERE to read the article

Bozzelli: Getting Good Data from DOE

moldflow
Dealing with so many variables can get confusing. One way to get a handle on them is to organize or categorize the processing variables into groups. To do this I use Don Paulson’s four plastic variables (Don founded Paulson Training Programs Inc.), but I change the word “variables” to “categories.” This helps separate plastic variables from machine variables. So I review the process problem relative to four categories of variables—from the point of view of the plastic: flow rate (encompassing shear rate and injection velocity); temperature; pressure; cooling rate and time…..
Click HERE to read John’s PTOnline article

Kip Doyle: Top 10 Reasons Why Molders Fail at Scientific Molding

scientificScientific Molding is a phrase that followers of John Bozzelli’s teaching and readers of his Plastics Technology columns should be familiar with by now. But what is Scientific Molding? And why do molders seem to have such a difficult time embracing its concepts?

The answer to the first question is straightforward: Scientific Molding is a practice for achieving optimal control of the injection molding process to deliver faster molding cycles, higher yields, and a more robust molding process. This optimal control of the molding process is realized by focusing mainly on the behavior of the material in the mold, rather than on the machine….
Click HERE to read this Plastics Technology article

Plastics Technology Article: Optimizing Your Molding Cycle

By Garrett MacKenzie

optimize

It is possible for machines to run too fast—find the sweet spot where maximum output overlaps with good parts.

 

In today’s fast paced plastic injection industry, lean manufacturing is a primary driver of profitability. Without lean, organizations find their operations are sluggish and ineffective. This not only affects a company’s ability to successfully grow and prosper, but the capability of taking on new work also suffers because current systems have not been effectively streamlined. This article addresses cycle time optimization, outlining the different variables within the molding process that can be used to maximize profits.

 

One of the first points that needs to be made when addressing this topic is to acknowledge that it is possible for machines to run too fast. Every molding job is different, and the following conditions must be satisfied to properly assure that the optimization is successful……

 

Click HERE to read the article

Injection Molding 5 Lessons Learned– Steve Bremmer

Oftentimes in molding the same lesson has to be learned over and over the hard way, which is why I’m such a fan of utilizing high quality training for everyone who touches a molding machine. The following items are some basic lessons learned that I have seen repeated over the years…..

https://www.linkedin.com/pulse/injection-molding-5-lessons-learned-steve-brammer?trk=hp-feed-article-title-like

First Source for Plastic Injection Information

Skip to toolbar